Synthesis of Novel Monophosphoramidite Ligands Derived from L-Proline for Rh-catalyzed Asymmetric Hydrogenation of α-Dehydroamino Acid Esters

Qing Heng ZENG^{1, 2}, Xiang Ping HU¹, Xin Miao LIANG¹, Zhuo ZHENG¹

¹ Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 ² Graduate School of Chinese Academy of Sciences, Beijing 100039

Abstract: Two novel monophosphoramidites were synthesized through a five-step transformation from commercially available L-proline. In the Rh-catalyzed asymmetric hydrogenation of α -dehydroamino acid derivatives, ligand (S_c , R_a)-1b showed good enantioselectivity and up to 91% e.e. was obtained.

Keywords: Monophosphoramidite, L-proline, Rh-catalyzed asymmetric hydrogenation, α -dehydro-amino acid.

Despite many bidentate P-chelate ligands have been achieved with encouraging performances^{1,2}, a renewed interest in the development of the chiral monodentate phosphorus-containing ligands for rhodium-catalyzed asymmetric hydrogenation has been paid attention in recent years³⁻⁵. Many monodentate phosphorus ligands have been reported, still there is a need for preparing readily available monodentate ligands, which have a broad application range in asymmetric hydrogenation. Recently, we have reported a series of new carbohydrates-based monophosphites, which gave exceptionally high enantioselectivities for asymmetric hydrogenation^{6,7}. As a persistent effort in the development of novel efficient monodentate ligands, herein we report two new monophosphoramidite ligands (S_c , S_a)-1a and (S_c , R_a)-1b derived from L-proline and their application in the Rh-catalyzed asymmetric hydrogenation of α -dehydroamino acid esters.

^{*} E-mail: zhengz@dicp.ac.cn

Scheme 1 Synthesis of monophosphoramidite (S_c, S_a) -1a and (S_c, R_a) -1b

Reagent and conditions: (a) LiAlH₄, THF, 0°C; (b) HCO₂Et, 50°C; (c) NaH, CH₃I, THF, rt to reflux; (d) KOH, 70°C; (e) (*R*)- or (*S*)-4-chloro-3,5-dioxa-4-phosphacyclohepta[2,1- α ;3,4- α ']-dinaph-thalene, toluene, 0°C to rt

Starting from commercially available L-proline, the target ligands were synthesized through a five-step transformation as outlined in **Scheme 1**. The initial step involved the synthesis of the key intermediate **6** according to a modified procedure reported by Wilson *et al*⁸. By the reduction, formylation, methylation and hydrolysis sequence, L-proline **2** was converted into the corresponding prolinol methyl ether **6**. Subsequent treatment of **6** with BINOL-derived (*S*)- or (*R*)-chlorophosphite⁹ in toluene at 0°C gave the target ligands (S_c , S_a)-**1a** and (S_c , R_a)-**1b**¹⁰ in nearly quantitative yields.

These new monophosphoramidites were then applied in the Rh-catalyzed asymmetric hydrogenation of α -dehydroamino acid esters (**Scheme 2**). The reaction was performed in CH₂Cl₂ at room temperature under H₂ pressure of 10 bar in the presence of 1 mol% catalysts prepared *in situ* from Rh(COD)₂BF₄ and 2.2 equiv. of chiral ligand, and the results are summarized in **Table 1**. Ligand (S_c , S_a)-**1a** surprisingly showed no catalytic activity and selectivity in the Rh-catalyzed asymmetric hydrogenation of ethyl (*Z*)-acetamidocinnamate **7a** while ligand (S_c , R_a)-**1b** gave a hydrogenation product in 90% e.e. (entry 2 *vs.* entry 1). This result suggested that (*S*)-central chirality and (*R*)-axial chirality was matched configurations in this kind of monophosphoramidites. We then selected the ligand (S_c , R_a)-**1b** for further study of this reaction. A variety of α -dehydroamino acid derivatives were undertaken to examine the efficiency of this catalyst system. All substrates were hydrogenated in good enantioselectivity, and the highest enantioselectivity of 91% e.e. was obtained in the hydrogenation of substrate **7b** with a chloro substitutent in phenyl ring (entry 5).

1323

Entry	Ligand	Substrate	Conv. (%)	Ee (%) ^b	Config. ^c
1	(S_c, S_a) -1a	7a	-	-	-
2	(S_c, R_a) -1b	7a	100	90	S
3	(S_c, R_a) -1b	7b	100	91	S
4	(S_c, R_a) -1b	7c	100	84	S
5	(S_c, R_a) -1b	7d	100	90	S

Table 1 Rh-catalyzed asymmetric hydrogenation of α -dehydroamino acid derivatives 7^{a}

^a Substrate/Rh/L* = 1/0.01/0.022, H₂ (10 bar), solvent = CH₂Cl₂, room temperature.
^b Conversion and enantiomeric excesses were determined by GC using CP-Chiralsil-L-Val capillary (0.25 mm x 30 m) column.

^c The absolute configuration was determined by comparing the GC retention times with GC data in the literature.

In conclusion, we have prepared two new monophosphoramidite ligands and good enantioselectivity of **1b** (91% e.e.) was obtained in the Rh-catalyzed asymmetric hydrogenation of α -dehydroamino acid esters. Further modification and application of these ligands are still in progress.

Acknowledgments

The authors would like to thank the National Natural Science Foundation of China (20472083) for financial support .

References and Notes

- 1. H. U. Blaser, C. Malan, B. Pugin, F. Spindler, H. Steiner, M. Studer, *Adv. Synth. Catal.*, **2003**, 345, 103.
- 2. W. Tang, X. Zhang, Chem. Rev., 2003, 103, 3029.
- 3. T. Jerphagnon, J. L. Renaud, C. Bruneau, Tetrahedron: Asymmetry, 2004, 15, 2101.
- 4. H. Guo, K. Ding, X. Dai, Chin. Sci. Bull., 2004, 49, 1575.
- 5. Q. Zeng, A. Mi, Y. Jiang, Prog. Chem., 2004, 16, 603.
- 6. H. Huang, Z. Zheng, H. Luo, C. Bai, X. Hu, H. Chen, Org. Lett., 2003, 5, 4137.
- 7. H. Huang, Z. Zheng, H. Luo, C. Bai, X. Hu, H. Chen, J. Org. Chem., 2004, 69, 2355.
- 8. S. R. Wilson, M. F. Price, Synth. Commun., 1982, 12, 657.
- 9. G. Franciò, C. G. Arena, F. Faraone, C. Graiff, M. Lanfranchi, A. Tiripicchio, *Eur. J. Inorg. Chem.*, **1999**, 1219.
- 10. Selected data for compound (S_c, S_a) -**1a**: $[α]_D^{25}$ +161 (c 0.3, CHCl₃); ¹H NMR (DMSO-d₆, δ ppm) 1.43-1.52 (m, 3 H), 1.79-1.82 (m, 1 H), 2.38-2.39 (m, 1 H), 2.65-2.68 (m, 1 H), 3.04-3.12 (m, 2 H), 3.13 (s, 3 H), 3.80-3.81 (m, 1 H), 7.03-7.48 (m, 8 H), 7.89-8.03 (m, 4 H); ³¹P NMR (DMSO-d₆, δ ppm) 149.1; HRMS Calcd. for $C_{26}H_{24}NO_3P$ + H: 430.1566, Found 430.1537. Selected data. for compound (S_c, R_a) -**1b**: $[α]_D^{25}$ -434 (c 0.3, CHCl₃); ¹H NMR (DMSO-d₆, δ ppm) 1.41-1.46 (m, 3 H), 1.62-1.72 (m, 1 H), 2.11-2.19 (m, 1 H), 2.84-2.91 (m, 1 H), 3.17-3.23 (m, 2 H), 3.24 (s, 3 H), 3.62-3.70 (m, 1 H), 7.06-7.48 (m, 8 H), 7.92-8.02 (m, 4 H); ³¹P NMR (DMSO-d₆, δ ppm) 149.9; HRMS Calcd. for $C_{26}H_{24}NO_3P$ + H: 430.1566, Found 430.1558.

Received 14 January, 2005